Automated text recognition techniques have made significant advancements; however, certain tasks still present challenges. This study is motivated by the need to automatically recognize hand-marked text on construction defect tags among millions of photographs. To address this challenge, we investigated three methods for automating hand-marked semantic text recognition (HMSTR)—a modified scene text recognition-based (STR) approach, a two-step HMSTR approach, and a lumped approach. The STR approach involves locating marked text using an object detection model and recognizing it using a competition-winning STR model. Similarly, the two-step HMSTR approach first localizes the marked text and then recognizes the semantic text using an image classification model. By contrast, the lumped approach performs both localization and identification of marked semantic text in a single step using object detection. Among these approaches, the two-step HMSTR approach achieved the highest F1 score (0.92) for recognizing circled text, followed by the STR approach (0.87) and the lumped approach (0.78). To validate the generalizability of the two-step HMSTR approach, subsequent experiments were conducted using check-marked text, resulting in an F1 score of 0.88. Although the proposed methods have been tested specifically with tags, they can be extended to recognize marked text in reports or books. Learn more…
view
Suh, S., Lee, G., Gil, D. & Kim, Y. (2023) Automated hand-marked semantic text recognition from photographs. Sci. Rep. 13, 14240.
view
Lee, G., S. Jang, S. Suh, M. Park, H. Roh, and L. M. Kim. 2023. “Three approaches for building information modeling library transplant.” Integrative Technology Stemmed from Interdisciplinary Convergence Research Leading to Human-Friendly Earth, 234–238. Seoul, Korea.
view
Ghang Lee, Suhyung Jang, Kyungha Lee, Munchel Kim. Looking towards the Future of BIM in South Korea Towards AI-Enhanced BIM[J]. Journal of Information Technology in Civil Engineering and Architecture, 2023, 15(4): 1-6. doi: 10.16670/j.cnki.cn11-5823/tu.2023.04.01
view
Jang, S., Lee, G., Shin, S., Roh, H., 2023. Lexicon-based content analysis of BIM logs for diverse BIM log mining use cases. Advanced Engineering Informatics 57, 102079. https://doi.org/10.1016/j.aei.2023.102079
MORE